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Coulomb gases (d ≥ 2)

We consider the Poisson equation

∆g = −cdδ0.

The fundamental solution is given by

g(x) :=

{
− log |x | for d = 2,

1
|x|d−2 for d ≥ 3.

A gas of N particles interacting according to the Coulomb law would
have an energy given by

HN(x1, . . . , xN) :=
∑
i 6=j

g(xi − xj) + N
N∑
i=1

V (xi ).
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We denote by PN
V ,β the Gibbs measure on (Rd)N associated to this

energy :

dPN
V ,β(x1, . . . , xN) =

1

ZN
V ,β

e−
β
2 HN (x1,...,xN )dx1, . . . ,dxN

Example (Ginibre) : let MN be an N by N matrix with iid entries with law
NC(0, 1

N ), then the eigenvalues have joint law PN
|x|2,2 with

dPN
|x|2,2(x1, . . . , xN) ∼

∏
i<j

|xi − xj |2e−N
∑N

i=1 |xi |
2
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Global asymptotics of the empirical measure

Our main subject of study is the empirical measure

µ̂N :=
1

N

N∑
i=1

δxi .

One can rewrite

HN(x1, . . . , xN) = N2E 6=V (µ̂N)

:= N2

(∫∫
x 6=y

g(x − y)µ̂N(dx)µ̂N(dy) +

∫
V (x)µ̂N(dx)

)
.

More generally, one can define, for any µ ∈ P(Rd),

EV (µ) :=

∫∫ (
g(x − y) +

1

2
V (x) +

1

2
V (y)

)
µ(dx)µ(dy).



5

Global asymptotics of the empirical measure

Our main subject of study is the empirical measure

µ̂N :=
1

N

N∑
i=1

δxi .

One can rewrite

HN(x1, . . . , xN) = N2E 6=V (µ̂N)

:= N2

(∫∫
x 6=y

g(x − y)µ̂N(dx)µ̂N(dy) +

∫
V (x)µ̂N(dx)

)
.

More generally, one can define, for any µ ∈ P(Rd),

EV (µ) :=

∫∫ (
g(x − y) +

1

2
V (x) +

1

2
V (y)

)
µ(dx)µ(dy).



5

Global asymptotics of the empirical measure

Our main subject of study is the empirical measure

µ̂N :=
1

N

N∑
i=1

δxi .

One can rewrite

HN(x1, . . . , xN) = N2E 6=V (µ̂N)

:= N2

(∫∫
x 6=y

g(x − y)µ̂N(dx)µ̂N(dy) +

∫
V (x)µ̂N(dx)

)
.

More generally, one can define, for any µ ∈ P(Rd),

EV (µ) :=

∫∫ (
g(x − y) +

1

2
V (x) +

1

2
V (y)

)
µ(dx)µ(dy).



5

Global asymptotics of the empirical measure

Our main subject of study is the empirical measure

µ̂N :=
1

N

N∑
i=1

δxi .

One can rewrite

HN(x1, . . . , xN) = N2E 6=V (µ̂N)

:= N2

(∫∫
x 6=y

g(x − y)µ̂N(dx)µ̂N(dy) +

∫
V (x)µ̂N(dx)

)
.

More generally, one can define, for any µ ∈ P(Rd),

EV (µ) :=

∫∫ (
g(x − y) +

1

2
V (x) +

1

2
V (y)

)
µ(dx)µ(dy).



6

If V is admissible, there exists a unique minimizer µV of the functional
EV and it is compactly suppported.

If V is continuous, one can check that almost surely µ̂N converges weakly
to µV .

A large deviation principle, due to Chafäı, Gozlan and Zitt is also
available : for d a distance that metrizes the weak topology (for example
Fortet-Mourier) one has in particular

1

N2
logPN

V ,β(d(µ̂N , µV ) ≥ r) −−−−→
N→∞

−β
2

inf
d(µ,µV )≥r

(EV (µ)− EV (µV )).

What about concentration ?

Local behavior extensively using several variations of the concept of
renormalized energy (see in particular Simona’s talk this morning).
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Concentration estimates

We will consider both the bounded Lipschitz distance dBL and the
Wassertein W1 distance, where we recall that

dBL(µ, ν) = sup
‖f ‖∞ ≤ 1
‖f ‖Lip ≤ 1

∫
f d(µ− ν);W1(µ, ν) = sup

‖f ‖Lip≤1

∫
f d(µ− ν)

Theorem
If V is C2 and V and ∆V satisfy some growth conditions,then there exist
a > 0, b ∈ R, c(β) such that for all N ≥ 2 and for all r > 0,

PN
V ,β(d(µ̂N , µV ) ≥ r) ≤ e−aβN

2r2+1d=2
β
4 N log N+bβN2− 2

d +c(β)N
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More insight about the growth conditions :

I ∆V has to grow not faster then V

I as soon as the model is well defined, the concentration estimate
holds for dBL

I if moreover V (x) & c |x |κ, for some κ > 0, we can say more about
c(β) near 0 and near ∞

I if moreover V (x) & c |x |2, the concentration estimate holds for W1

I the latter allows to get the almost sure convergence of
W1(µ̂N , µV ) to zero down to β ' log N

N

I if the potential is subquadratic, a, b and c(β) can be made more
explicit.
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A few more comments :

I Possible rewriting : there exist r0,C > 0, such that for all N ≥ 2, if

r ≥

{
r0

√
log N
N if d = 2

r0 N
−1/d if d ≥ 3,

PN
V ,β(d(µ̂N , µV ) ≥ r) ≤ e−CN

2r2

.

I thanks to the large deviation results of CGZ, we know that we are
in the right scale

I for Ginibre, the constants can be computed explicitely ; improves
on previous results based on determinantal structure (can we use
the Gaussian nature of the entries ?)

I non optimal local laws can be deduced
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Outline of the proof

Special case when V = δK , for K a compact set of Rd .
First ingredient : lower bound on the partition function. There exists C
such that

ZN
V ,β ≥ e−

β
2 N

2EV (µV )−NC .

For A ⊂ (Rd)N ,

PN
V ,β(A) =

1

ZN
V ,β

∫
A

e−
β
2 HN (x1,...,xN )dx1 . . . dxN

≤ eNC
∫
A

e−
β
2 N

2(E 6=V (µ̂N )−EV (µV ))dx1 . . . dxN

≤ eNCe−
β
2 N

2 infA(E 6=V (µ̂N )−EV (µV ))(volK )N

We want to take A := {d(µ̂N , µV ) ≥ r}.
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Coulomb transport inequalities

We aim at an inequality of the type : for any µ ∈ P(Rd),

d(µ, µV )2 ≤ CV (EV (µ)− EV (µV )).

This inequality is the Coulomb counterpart of Talagrand T1 inequality :
ν satisfies T1 iif there exists C > 0 such that for any µ ∈ P(Rd),

W1(µ, ν)2 ≤ CH(µ|ν).

In 1D, previous results by Biane-Voiculescu, Hiai-Petz-Ueda,
Ledoux-Popescu, M.-Maurel-Segala

To point out what is specific to the Coulombian nature of the
interaction, we will show the following local version of our inequality :

Proposition For any compact set D of Rd , there exists CD such that for
any µ, ν ∈ P(D) such that E(µ) <∞ and E(ν) <∞,

W1(µ, ν)2 ≤ CDE(µ− ν).
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Proof of the Proposition

If µ and ν have their support in D, there exists D+ such that

W1(µ, ν) = sup
‖f ‖Lip ≤ 1
f ∈ C(D+)

∫
f d(µ− ν)

By a density argument, one can asumme that η := µ− ν has a smooth
density h, let Uη := g ∗ h. From the Poisson equation, we know that for
any smooth function ϕ,∫

∆ϕ(y)g(y)dy = −cdϕ(0).

Choosing ϕ(y) = h(x − y), we get that∫
∆h(x − y)g(y)dy = −cdh(x)

But we also have∫
∆h(x − y)g(y)dy =

∫
∆g(x − y)h(y)dy = ∆Uη(x).
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Therefore, for any Lipschitz function with support in D+∫
f dη = − 1

cd

∫
f (x)∆Uη(x)dx = − 1

cd

∫
∇f (x) · ∇Uη(x)dx

We can now conclude as∣∣∣∣∫ ∇f (x) · ∇Uη(x)dx

∣∣∣∣ ≤ ∫
D+

|∇f | · |∇Uη| ≤
∫
D+

|∇Uη|

≤
(
vol(D+)

∫
|∇Uη|2

)1/2

.

But ∫
|∇Uη|2 = cdE(η).
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Thank you for your attention !


