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Coulomb gases (d > 2)

We consider the Poisson equation

Ag = —c4dp.

The fundamental solution is given by

[ —log|x| ford=2,

A gas of N particles interacting according to the Coulomb law would
have an energy given by

N

Hy(x1, ..oy xn) = Zg(x,- —x)+ NZ V().

i i=1



We denote by P’yﬁ the Gibbs measure on (R4)V associated to this
energy :
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We denote by ]P”yﬁ the Gibbs measure on (R4)V associated to this
energy :

1 ‘
dP,\\/’.a(Xh CoXN) = 767§HN(X1”""XN)dx1, o dxy

Example (Ginibre) : let My be an N by N matrix with iid entries with law
Nc(0, 1), then the eigenvalues have joint law P|’Y<\2 , with

N 2
e o) ~ [T o — e W

i<j
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Our main subject of study is the empirical measure
L
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One can rewrite
HN(X17 e 7X/V) = N25‘i(ﬂN)

—w(f] e i(inan) + [ V(s)in(ax) ).
xFy
More generally, one can define, for any u € P(RY),

euti) = [[ (= + 3v60 + 3V nlaxdutan)
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If V is admissible, there exists a unique minimizer 1y of the functional
Ev and it is compactly suppported.

If V is continuous, one can check that almost surely fiy converges weakly

to py.

A large deviation principle, due to Chafai, Gozlan and Zitt is also
available : for d a distance that metrizes the weak topology (for example
Fortet-Mourier) one has in particular

1 N N B
i > s _
N2 log Py 5(d(fin, v) = 1) N—oo 2 d(u]D\f)Zr(gv(u) Ev(m)).

What about concentration ?

Local behavior extensively using several variations of the concept of
renormalized energy (see in particular Simona's talk this morning).
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Concentration estimates

We will consider both the bounded Lipschitz distance dg; and the
Wassertein W, distance, where we recall that

dpr(p,v) = sup /fd(u—V); Wi(p,v) = sup /fd(u—l/)
Il <1 IFlp<1

Theorem
If V is C?> and V and AV satisfy some growth conditions,then there exist
a>0, beR, c(B) such that for all N > 2 and for all r > 0,

Py sld(fin, pv) > r) < e*aﬁ"’z’z“d:z?’V'°€’V+b5’\’27%+¢(5)”
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More insight about the growth conditions :
> AV has to grow not faster then V

» as soon as the model is well defined, the concentration estimate
holds for dg;

> if moreover V(x) 2 c|x|®, for some k > 0, we can say more about
¢(pB) near 0 and near oo

» if moreover V/(x) 2> c|x|2, the concentration estimate holds for W,

> the latter allows to get the almost sure convergence of
Wi (fin, pv) to zero down to 8 ~ #

> if the potential is subquadratic, a, b and ¢(/3) can be made more
explicit.
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A few more comments :

>

Possible rewriting : there exist ry, C > 0, such that for all N > 2, if

. roy/ BN ifd =2
| NTYVE ifd >3,

" _CN22

PY 5(d(fin, pv) > r) < e N
thanks to the large deviation results of CGZ, we know that we are
in the right scale

for Ginibre, the constants can be computed explicitely ; improves
on previous results based on determinantal structure (can we use
the Gaussian nature of the entries ?)

non optimal local laws can be deduced
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Outline of the proof

Special case when V = dx, for K a compact set of RY.
First ingredient : lower bound on the partition function. There exists C

such that
ZY , > e ENevtim) e

1
PYs(A) = — /e%HN(Xl ----- M lx ... dxy
zZ¥ 5 Ja
< oMC / o~ EVEL M -E ) 4, - dxy
A
< eNCe BN infalE](An)=Ev (V) (yol K)N

We want to take A := {d(fn, pv) > r}.
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Coulomb transport inequalities

We aim at an inequality of the type : for any u € P(RY),

d(p, pv)? < Cu(Ev(p) — Evipy)).

This inequality is the Coulomb counterpart of Talagrand T; inequality :
v satisfies Ty iif there exists C > 0 such that for any u € P(RY),

Wa(u, v)? < CH(ulv).

In 1D, previous results by Biane-Voiculescu, Hiai-Petz-Ueda,
Ledoux-Popescu, M.-Maurel-Segala

To point out what is specific to the Coulombian nature of the
interaction, we will show the following local version of our inequality :

Proposition For any compact set D of RY, there exists Cp such that for
any p,v € P(D) such that £(p) < 0o and E(v) < oo,

Wi(p,v)2 < Co€ (i — v).
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Proof of the Proposition

If 1 and v have their support in D, there exists D, such that

Wi(p,v) = sup /fd(/z —v)
1fllp <1
fecD:)

By a density argument, one can asumme that 7 := p — v has a smooth
density h, let U" := g * h. From the Poisson equation, we know that for
any smooth function ¢,

/Aso y)dy = —ca(0).
Choosing ¢(y) = h(x — y), we get that
/Ah x —y)g(y)dy = —cah(x)
But we also have

/Ah(X —y)g(y)dy = /Ag(x —y)h(y)dy = AU"(x).
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Therefore, for any Lipschitz function with support in D

/fdn:—C—ld/f(x)AU"(x)dX:—i Vi(x) - VU"(x)dx

Cd

We can now conclude as

'/Vf(x)~VU”(X)dx

s/ |Vf|~|vu"|s/ U]
D, D,

< (vol(D+)/|VU’7|2>1/2.

/|VU’7\2 = cs&(n).
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Thank you for your attention!
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